- 总时间限制:
- 6000ms
- 内存限制:
- 65536kB
- 描述
- Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It’s clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?
- 输入
- The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.
- 输出
- For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.
- 样例输入
-
1 2 3 1 2 3 2 2 3
- 样例输出
-
3 3 4
题意:给出M个长度为N的整数序列,从每个序列中任取一个求和,共有N^M个和,求其中最小的N个和,N<=2000,M<=100
题解:
- 先考虑M=2的情况,当M=2时,先将A[]与B[]进行从小到大排序,那么最小值就是A[1]+B[1],第二小的值为min( A[1+1]+B[1], A[1]+B[1+1],显然当我们确定了第k小的值的时候,第k+1小的值就是A[i+1]+B[j]与A[i]+B[j+1]其中之一。
- 但是这样的枚举可能会重复,所以我们规定:如果把j加1产生新的备选方案,那么以后只能再加j,不能再加i。类似于dp,这样已经遍历了所有可能的方案。
- 算法步骤:建立一个小根堆,里面存储node(i,j,last)三元组,以A[i]+B[j]的值作为比较的节点权值。
- 向堆中插入(1,1,false)
- 取出堆顶的(i,j,last),向堆中插入(i,j+1,true),如果last==false,那么向堆中插入(i+1,j,false);
- 步骤2进行n次
- 数学归纳法,先求出前两个序列的前N小和,再将第三个序列与得出的前两个序列的前N小和求前N小和,最终得到M个序列任取一个数相加构成的前N小和。
- 时间复杂度O(MNlog(N)).
//#include<bits/stdc++.h> #include<algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cassert> #include <cstdio> #include <vector> #include <string> #include <cmath> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define P(a,b,c) make_pair(a,make_pair(b,c)) #define rep(i,a,n) for (int i=a;i<=n;i++) #define per(i,a,n) for (int i=n;i>=a;i--) #define CLR(vis) memset(vis,0,sizeof(vis)) #define MST(vis,pos) memset(vis,pos,sizeof(vis)) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef pair<int,pair<int,int> >pii; typedef long long ll; typedef unsigned long long ull; const ll mod = 1000000007; const int INF = 0x3f3f3f3f; ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } template <class T> inline bool scan_d(T &ret) { char c; int sgn; if(c=getchar(),c==EOF) return 0; //EOF while(c!='?'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='?')?-1:1; ret=(c=='?')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); ret*=sgn; return 1; } inline void outt(int x) { if(x>9) outt(x/10); putchar(x%10+'0'); } const int MAXN = 1e6+10; int n,t,m; int a[2010]; int b[2010]; int c[2010]; struct node{ int x; int y; bool last; node(int _x=0,int _y=0,bool _last=0):x(_x),y(_y),last(_last){} bool operator < (const node &B) const{//这里的const别丢了 return a[x]+b[y]>a[B.x]+b[B.y]; } }; priority_queue<node>q; int main(){ cin>>t; while(t--){ scanf("%d%d", &n,&m); rep(i,1,m)scanf("%d", &c[i]); sort(c+1,c+m+1); rep(i,2,n){ rep(j,1,m){ scanf("%d", &b[j]); } sort(b+1,b+m+1); rep(j,1,m){ a[j]=c[j]; } while(!q.empty())q.pop(); q.push(node(1,1,false)); rep(j,1,m){ node p=q.top(); c[j]=a[p.x]+b[p.y]; q.pop(); q.push(node(p.x,p.y+1,true)); if(p.last==false){ q.push(node(p.x+1,p.y,false)); } } } rep(i,1,m){ printf("%d ", c[i]); } cout<<endl; } return 0; }