- 题意:给定N(1<=N<=1e6),将N!分解质因数以及质因数个数,输出分解结果
- 题解:
- 直接分解显然会炸
- 于是我们可以先筛出小于N的所有质数
- 对于每个质因子p,1~N中包含一个p的数有[N/p]个,包含两个的有[N/p^2]个…
- 由于后一包含前一,所以总共有
个质因子p
- O(NlogN)
-
//#include<bits/stdc++.h> #include<algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cassert> #include <cstdio> #include <vector> #include <string> #include <cmath> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define P(a,b,c) make_pair(a,make_pair(b,c)) #define rep(i,a,n) for (int i=a;i<=n;i++) #define per(i,a,n) for (int i=n;i>=a;i--) #define CLR(vis) memset(vis,0,sizeof(vis)) #define MST(vis,pos) memset(vis,pos,sizeof(vis)) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef pair<int,pair<int,int> >pii; typedef long long ll; typedef unsigned long long ull; const ll mod = 1000000007; const int INF = 0x3f3f3f3f; ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } template<class T>inline void gmax(T &A, T B) { (A<B)&&(A=B);//if(B>A)A=B; } template<class T>inline void gmin(T &A, T B) { (A>B)&&(A=B);//if(B<A)A=B; } template <class T> inline bool scan_d(T &ret) { char c; int sgn; if(c=getchar(),c==EOF) return 0; //EOF while(c!='?'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='?')?-1:1; ret=(c=='?')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); ret*=sgn; return 1; } inline void outt(int x) { if(x>9) outt(x/10); putchar(x%10+'0'); } const int maxn=1e6+10; int vis[maxn]; struct node{ ll prime; ll cnt; }P[maxn]; int cnt; void init(int n){ vis[1]=1; cnt=0; rep(i,1,n){ if(!vis[i]){ P[++cnt].prime=i; P[cnt].cnt=0; for(int j=i*2;j<=n;j+=i){ if(!vis[j])vis[j]=1; } } } } int main(){ int n; scanf("%d", &n); init(n); rep(i,1,cnt){ ll base=P[i].prime; ll num=base; while(num<=n){ P[i].cnt+=n/num; num*=base; } } rep(i,1,cnt){ printf("%lld %lld",P[i].prime,P[i].cnt); if(i!=cnt)puts(""); } return 0; }