- https://vjudge.net/problem/POJ-1737
- 题意
- 给n个点,计算有多少个连通图
- 题解
- 计数DP,f(n)表示n个点,每个点都和点1相连,且n个点互相连通的图的个数
(蓝字非常重要,这个条件有效地避免了重复计算)
- g(n)表示n个点,每个点都和点1相连,且不是n个点互相连通的图的个数
- S(n)表示n个点的图的个数。
- 显然,有:f(n)=S(n)−g(n)
S(n)=
- 而且有(关键):
- 从除了1之外的n-1个点中选出i-1个点,让这i个点互相连通,而剩下的n-i个点和这i个点没有边相连,互相之间随意连接
- 其实这道题的关键在于“围绕基准点构造一个整体”
- 基准点不一定能从子关系中看出,不妨直接从结果入手
- 最后的连通块中,结点1(任一结点)在所有结果之中,所以,我们由结点1这个基准点得到了结点1所在连通块的整体
- 最后得到状态转移方程:
- 计数DP,f(n)表示n个点,每个点都和点1相连,且n个点互相连通的图的个数
- 代码
- 取余逆元版本
-
#include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,a,n) for(int i=n;i>=1;i--) typedef long long ll; typedef unsigned long long ull; const ll mod=1e9+7; const int INF=0x3f3f3f3f; ll f[55]; ll jc[55]; ll inv[55]; ll power(ll a,ll b){ ll ans=1; while(b){ if(b&1)ans=ans*a%mod; a=a*a%mod; b/=2; } return ans; } ll C(int n,int m){ return jc[n]*inv[m]%mod*inv[n-m]%mod; } int main(){ int n; jc[0]=1; inv[0]=1; rep(i,1,50){ jc[i]=jc[i-1]*i%mod; inv[i]=power(jc[i],mod-2); } rep(i,1,50){ f[i]=power(2,i*(i-1)/2); rep(j,1,i-1){ f[i]=(f[i]-f[j]*C(i-1,j-1)%mod*power(2,(i-j)*(i-j-1)/2))%mod; } } while(scanf("%d", &n)&&n){ printf("%I64d\n", (f[n]+mod)%mod); } return 0; }
- 高精度版本
-
#include<iostream> #include<cstring> #include<cstdio> using namespace std; #define rep(i,a,n) for(int i=a;i<=n;i++) #define per(i,a,n) for(int i=n;i>=1;i--) typedef long long ll; typedef unsigned long long ull; const ll mod=1e9+7; const int INF=0x3f3f3f3f; #define MAXN 9999 #define MAXSIZE 10 #define DLEN 4 class BigNum { private: int a[500]; //可以控制大数的位数 int len; //大数长度 public: BigNum(){ len = 1;memset(a,0,sizeof(a)); } //构造函数 BigNum(const int); //将一个int类型的变量转化为大数 BigNum(const char*); //将一个字符串类型的变量转化为大数 BigNum(const BigNum &); //拷贝构造函数 BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算 friend istream& operator>>(istream&, BigNum&); //重载输入运算符 friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符 BigNum operator+(const BigNum &) const; //重载加法运算符,两个大数之间的相加运算 BigNum operator-(const BigNum &) const; //重载减法运算符,两个大数之间的相减运算 BigNum operator*(const BigNum &) const; //重载乘法运算符,两个大数之间的相乘运算 BigNum operator/(const int &) const; //重载除法运算符,大数对一个整数进行相除运算 BigNum operator^(const int &) const; //大数的n次方运算 int operator%(const int &) const; //大数对一个int类型的变量进行取模运算 bool operator>(const BigNum & T)const; //大数和另一个大数的大小比较 bool operator>(const int & t)const; //大数和一个int类型的变量的大小比较 void print(); //输出大数 }; BigNum::BigNum(const int b) //将一个int类型的变量转化为大数 { int c,d = b; len = 0; memset(a,0,sizeof(a)); while(d > MAXN) { c = d - (d / (MAXN + 1)) * (MAXN + 1); d = d / (MAXN + 1); a[len++] = c; } a[len++] = d; } BigNum::BigNum(const char*s) //将一个字符串类型的变量转化为大数 { int t,k,index,l,i; memset(a,0,sizeof(a)); l=strlen(s); len=l/DLEN; if(l%DLEN) len++; index=0; for(i=l-1;i>=0;i-=DLEN) { t=0; k=i-DLEN+1; if(k<0) k=0; for(int j=k;j<=i;j++) t=t*10+s[j]-'0'; a[index++]=t; } } BigNum::BigNum(const BigNum & T) : len(T.len) //拷贝构造函数 { int i; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = T.a[i]; } BigNum & BigNum::operator=(const BigNum & n) //重载赋值运算符,大数之间进行赋值运算 { int i; len = n.len; memset(a,0,sizeof(a)); for(i = 0 ; i < len ; i++) a[i] = n.a[i]; return *this; } istream& operator>>(istream & in, BigNum & b) //重载输入运算符 { char ch[MAXSIZE*4]; int i = -1; in>>ch; int l=strlen(ch); int count=0,sum=0; for(i=l-1;i>=0;) { sum = 0; int t=1; for(int j=0;j<4&&i>=0;j++,i--,t*=10) { sum+=(ch[i]-'0')*t; } b.a[count]=sum; count++; } b.len =count++; return in; } ostream& operator<<(ostream& out, BigNum& b) //重载输出运算符 { int i; cout << b.a[b.len - 1]; for(i = b.len - 2 ; i >= 0 ; i--) { cout.width(DLEN); cout.fill('0'); cout << b.a[i]; } return out; } BigNum BigNum::operator+(const BigNum & T) const //两个大数之间的相加运算 { BigNum t(*this); int i,big; //位数 big = T.len > len ? T.len : len; for(i = 0 ; i < big ; i++) { t.a[i] +=T.a[i]; if(t.a[i] > MAXN) { t.a[i + 1]++; t.a[i] -=MAXN+1; } } if(t.a[big] != 0) t.len = big + 1; else t.len = big; return t; } BigNum BigNum::operator-(const BigNum & T) const //两个大数之间的相减运算 { int i,j,big; bool flag; BigNum t1,t2; if(*this>T) { t1=*this; t2=T; flag=0; } else { t1=T; t2=*this; flag=1; } big=t1.len; for(i = 0 ; i < big ; i++) { if(t1.a[i] < t2.a[i]) { j = i + 1; while(t1.a[j] == 0) j++; t1.a[j--]--; while(j > i) t1.a[j--] += MAXN; t1.a[i] += MAXN + 1 - t2.a[i]; } else t1.a[i] -= t2.a[i]; } t1.len = big; while(t1.a[len - 1] == 0 && t1.len > 1) { t1.len--; big--; } if(flag) t1.a[big-1]=0-t1.a[big-1]; return t1; } BigNum BigNum::operator*(const BigNum & T) const //两个大数之间的相乘运算 { BigNum ret; int i,j,up; int temp,temp1; for(i = 0 ; i < len ; i++) { up = 0; for(j = 0 ; j < T.len ; j++) { temp = a[i] * T.a[j] + ret.a[i + j] + up; if(temp > MAXN) { temp1 = temp - temp / (MAXN + 1) * (MAXN + 1); up = temp / (MAXN + 1); ret.a[i + j] = temp1; } else { up = 0; ret.a[i + j] = temp; } } if(up != 0) ret.a[i + j] = up; } ret.len = i + j; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } BigNum BigNum::operator/(const int & b) const //大数对一个整数进行相除运算 { BigNum ret; int i,down = 0; for(i = len - 1 ; i >= 0 ; i--) { ret.a[i] = (a[i] + down * (MAXN + 1)) / b; down = a[i] + down * (MAXN + 1) - ret.a[i] * b; } ret.len = len; while(ret.a[ret.len - 1] == 0 && ret.len > 1) ret.len--; return ret; } int BigNum::operator %(const int & b) const //大数对一个int类型的变量进行取模运算 { int i,d=0; for (i = len-1; i>=0; i--) { d = ((d * (MAXN+1))% b + a[i])% b; } return d; } BigNum BigNum::operator^(const int & n) const //大数的n次方运算 { BigNum t,ret(1); int i; if(n<0) exit(-1); if(n==0) return 1; if(n==1) return *this; int m=n; while(m>1) { t=*this; for( i=1;i<<1<=m;i<<=1) { t=t*t; } m-=i; ret=ret*t; if(m==1) ret=ret*(*this); } return ret; } bool BigNum::operator>(const BigNum & T) const //大数和另一个大数的大小比较 { int ln; if(len > T.len) return true; else if(len == T.len) { ln = len - 1; while(a[ln] == T.a[ln] && ln >= 0) ln--; if(ln >= 0 && a[ln] > T.a[ln]) return true; else return false; } else return false; } bool BigNum::operator >(const int & t) const //大数和一个int类型的变量的大小比较 { BigNum b(t); return *this>b; } void BigNum::print() //输出大数 { int i; cout << a[len - 1]; for(i = len - 2 ; i >= 0 ; i--) { cout.width(DLEN); cout.fill('0'); cout << a[i]; } cout << endl; } BigNum f[100]; BigNum C[100][100]; BigNum power(BigNum a,int b) { BigNum ans=1; while(b) { if(b&1)ans=ans*a; a=a*a; b/=2; } return ans; } int main() { int n; C[0][0]=1; rep(i,1,55) { C[i][0]=1; rep(j,1,i) { C[i][j]=C[i-1][j]+C[i-1][j-1]; } } rep(i,1,55) { f[i]=power(2,i*(i-1)/2); rep(j,1,i-1) { f[i]=f[i]-f[j]*C[i-1][j-1]*power(2,(i-j)*(i-j-1)/2); } } while(scanf("%d", &n)&&n) { f[n].print(); } return 0; }