Description:
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
Input:
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
Output:
The only line of the output will contain S modulo 9901.
Sample Input:
2 3
Sample Output:
15
Note:
2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
方法一:直接进行将a进行质因数分解+多项式表示所有约数和+分治得到等比数列和+快速幂
代码:
//#include<bits/stdc++.h> #include<algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cassert> #include <cstdio> #include <vector> #include <string> #include <cmath> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define P(a,b,c) make_pair(a,make_pair(b,c)) #define rep(i,a,n) for (int i=a;i<=n;i++) #define per(i,a,n) for (int i=n;i>=a;i--) #define CLR(vis) memset(vis,0,sizeof(vis)) #define MST(vis,pos) memset(vis,pos,sizeof(vis)) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef pair<int,pair<int,int> >pii; typedef long long ll; const ll mod = 1000000007; const int INF = 0x3f3f3f3f; ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } const int maxn=10; int fac[10000]; int fre[10000]; const int mode=9901; int work_quality_factor(int n) { int res,temp,i; res=0; temp=n; for(i=2;i*i<=temp;i++) if(temp%i==0) { fac[res]=i; fre[res]=0; while(temp%i==0) { temp=temp/i; fre[res]++; } res++; } if(temp>1) { fac[res]=temp; fre[res++]=1; } return res; } long long Mode(long long a, long long b) { long long sum = 1; while (b) { if (b & 1) { sum = (sum * a) % mode; b--; } b /= 2; a = a * a % mode; } return sum; } ll sum(int p,int c){ if(p==0)return 0; if(c==0)return 1; if(c&1){ return (1+Mode(p,c/2+1))%mode*sum(p,c/2)%mode; }else{ return (1+Mode(p,c/2+1) )%mode*sum(p,c/2-1)%mode+Mode(p,c/2)%mode; } } int main(){ int a,b; cin>>a>>b; int res=work_quality_factor(a); rep(i,0,res-1){ fre[i]*=b; } ll SUM=1; rep(i,0,res-1){ SUM=SUM*sum(fac[i],fre[i])%mode; } cout<<SUM; return 0; }