In an edge-weighted tree, the xor-length of a path p is defined as the xor sum of the weights of edges on p:
We say a path the xor-longest path if it has the largest xor-length. Given an edge-weighted tree with n nodes, can you find the xor-longest path?
Input
The input contains several test cases. The first line of each test case contains an integer n(1<=n<=100000), The following n-1 lines each contains three integers u(0 <= u < n),v(0 <= v < n),w(0 <= w < 2^31), which means there is an edge between node u and v of length w.
Output
For each test case output the xor-length of the xor-longest path.
Sample Input
4 0 1 3 1 2 4 1 3 6
Sample Output
7
Hint
The xor-longest path is 0->1->2, which has length 7 (=3 ⊕ 4)
- 题意:给一颗n个节点的树,树的每条边有权值,从中选出两个结点x、y,把x到y最短路径上的值异或起来,求最大的异或值。
题解:对于一棵树的两个结点之间的路径异或最大值,如果用朴素方法的话,可能需要遍历C(n,2)次所有的节点。
但是题目有明确的暗示,异或,异或符合交换律,并且a^a=0。树的节点到根节点的最短路径唯一,那么我们用d[i]表示节点i到根节点路径的异或值,两个节点路径之间的异或值就是d[i]^d[j]。 - 那么问题就转化为了与ch1602一样的问题,即选出两个数,异或值最大。
- 转化后的解法:
- 先用dfs得出d[]
- 每当输入一个d[i],将这个数转化为32位的二进制数,从高位到低位放入字典树中,再进行一次查询,查询优先向该位异或值为1地方向进行。
- 需要注意的点
- 需要用邻接表来储存边权关系,且不能用vector版本的简易邻接表。
- 需要存正反边,然后用vis标记。
- 多种样例,需要对变量初始化。
- 需要自己的定义max。
- 不能用cin输入。
//#include<bits/stdc++.h>
#include<algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <vector>
#include <string>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define P(a,b,c) make_pair(a,make_pair(b,c))
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n;i>=a;i--)
#define CLR(vis) memset(vis,0,sizeof(vis))
#define MST(vis,pos) memset(vis,pos,sizeof(vis))
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef pair<int,pair<int,int> >pii;
typedef long long ll;
typedef unsigned long long ull;
const ll mod = 1000000007;
const int INF = 0x3f3f3f3f;
ll gcd(ll a, ll b) {
return b ? gcd(b, a%b) : a;
}
template <class T>
inline bool scan_d(T &ret) {
char c;
int sgn;
if(c=getchar(),c==EOF) return 0; //EOF
while(c!='?'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='?')?-1:1;
ret=(c=='?')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
inline void outt(int x) {
if(x>9) outt(x/10);
putchar(x%10+'0');
}
template<class T>inline void gmax(T &A, T B){
(A<B)&&(A=B);//if(B>A)A=B;
}
template<class T>inline void gmin(T &A, T B){
(A>B)&&(A=B);//if(B<A)A=B;
}
const int maxn=1e5+10;
int d[maxn];
int Base[40];
int vis[maxn];
int trie[maxn*40][2],tot=0;
struct Edge { //边结构
int v,cost,next; //储存边以及权
Edge(int _v=0,int _cost=0,int _next=0):v(_v),cost(_cost),next(_next) {};
}edge[maxn<<1];
int p,head[maxn];
void addedge(int u,int v,int w) {
edge[p].v=v,edge[p].cost=w,edge[p].next=head[u],head[u]=p++;
}
void into_base(int x) {
int cnt=33;
CLR(Base);
while(x) {
Base[--cnt]=x%2;
x/=2;
}
}
void insert() {
int p=0;
rep(i,1,32) {
int ch=Base[i];
if(trie[p][ch]==0)trie[p][ch]=++tot;
p=trie[p][ch];
}
}
int search() {
int p=0;
int cnt=0;
rep(i,1,32) {
cnt*=2;
int ch=Base[i];
if(trie[p][!ch]!=0) {
ch=!ch;
cnt++;
}
p=trie[p][ch];
}
return cnt;
}
void dfs(int u) {
vis[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next) {
int v=edge[i].v;
int w=edge[i].cost;
if(!vis[v]) {
d[v]=d[u]^w;
dfs(v);
}
}
}
int main() {
int n;
while(~scanf("%d", &n)) {
p=0;
MST(head,-1);
tot=0;
CLR(d);
CLR(trie);
CLR(vis);
int u,v,w;
rep(i,1,n-1) {
scan_d(u);
scan_d(v);
scan_d(w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(0);
int maxx=0;
rep(i,0,n-1) {
into_base(d[i]);
insert();
gmax(maxx,search());
}
cout<<maxx<<endl;
}
return 0;
}