While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ’s farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself 🙂 .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler backT seconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
#include<algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cassert> #include <cstdio> #include <vector> #include <string> #include <cmath> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define P(a,b,c) make_pair(a,make_pair(b,c)) #define rep(i,a,n) for (int i=a;i<=n;i++) #define per(i,a,n) for (int i=n;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef pair<string,pair<int,int> > pii; typedef long long ll; const ll mod = 1000000007; const int INF = 0x3f3f3f3f; ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } const int MAXN=1050; int dist[MAXN]; struct Edge { int u,v; int cost; Edge(int _u=0,int _v=0,int _cost=0):u(_u),v(_v),cost(_cost){} }; vector<Edge>E; bool bellman_ford(int start,int n)//点的编号从1开始 { for(int i=1;i<=n;i++)dist[i]=INF; dist[start]=0; for(int i=1;i<n;i++)//最多做n-1次 { bool flag=false; for(int j=0;j<E.size();j++) { int u=E[j].u; int v=E[j].v; int cost=E[j].cost; if(dist[v]>dist[u]+cost) { dist[v]=dist[u]+cost; flag=true; } } if(!flag) return true;//没有负环回路 } for(int j=0;j<E.size();j++) if(dist[E[j].v]>dist[E[j].u]+E[j].cost) return false;//有负环回路 return true;//没有负环回路 } int main() { int T; scanf("%d", &T); while(T--) { int N, M, W, i, a, b, c; scanf("%d%d%d", &N, &M, &W); E.clear();//注意初始化 for(i=0; i<M; i++) { scanf("%d%d%d", &a, &b, &c); E.push_back(Edge(a,b,c)); E.push_back(Edge(b,a,c)); } for(i=0; i<W; i++) { scanf("%d%d%d", &a, &b, &c); E.push_back(Edge(a,b,-c)); } int ans = bellman_ford(1,N); if(ans == 1) printf("NO\n"); else printf("YES\n"); } return 0;}