相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
Input输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
Output每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
Sample Output
1414.2 oh!
代码:
#include<algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cassert> #include <cstdio> #include <vector> #include <string> #include <cmath> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define P(a,b,c) make_pair(a,make_pair(b,c)) #define rep(i,a,n) for (int i=a;i<=n;i++) #define per(i,a,n) for (int i=n;i>=a;i--) #define CLR(vis) memset(vis,0,sizeof(vis)) #define MST(vis,pos) memset(vis,pos,sizeof(vis)) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef pair<int,pair<int,int> >pii; typedef long long ll; const ll mod = 1000000007; ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } const int MAXN=110;//最大点数 const int MAXM=10005;//最大边数 int F[MAXN];//并查集使用 struct Edge { int u,v;double w; }edge[MAXM];//存储边的信息,包括起点/终点/权值 int tol;//边数,加边前赋值为0 void addedge(int u,int v,double w) { edge[tol].u=u; edge[tol].v=v; edge[tol++].w=w; } bool cmp(Edge a,Edge b) {//排序函数,讲边按照权值从小到大排序 return a.w<b.w; } int find(int x) { if(F[x]==-1)return x; else return F[x]=find(F[x]); } double Kruskal(int n)//传入点数,返回最小生成树的权值,如果不连通返回-1 { memset(F,-1,sizeof(F)); sort(edge,edge+tol,cmp); int cnt=0;//计算加入的边数 double ans=0.0; for(int i=0;i<tol;i++) { int u=edge[i].u; int v=edge[i].v; double w=edge[i].w; int t1=find(u); int t2=find(v); if(t1!=t2) { ans+=w; F[t1]=t2; cnt++; } if(cnt==n-1)break; } if(cnt<n-1)return -1.0;//不连通 else return ans; } pair<double,double>p[1010]; double dist(int i,int j){ return sqrt((p[i].first-p[j].first)*(p[i].first-p[j].first)+(p[i].second-p[j].second)*(p[i].second-p[j].second)); } int main(){ int t,n,m; scanf("%d", &t); while(t--){ tol=0; scanf("%d",&n); rep(i,1,n)scanf("%lf%lf",&p[i].first,&p[i].second); rep(i,1,n) rep(j,1,n){ if(j>i){ double d=dist(i,j); if(d<10.0||d>1000.0)continue; else addedge(i,j,d); } } double h=Kruskal(n)*100; if(h>=0.0)printf("%.1f", h); else printf("oh!"); printf("\n"); } return 0; }